Skip to main content
Bringing Data to the Business Forefront

Build Business With Analytical Fluency

Discover how you can use the language of data to improve corporate decision-making with the online MS in Business Analytics from W&M.

By clicking "Get Brochure,” I agree to provide the contact information listed above for the purpose of receiving communications regarding educational programs and opportunities.

By clicking "Get Brochure,” I agree to provide the contact information listed above for the purpose of receiving communications regarding educational programs and opportunities.

Online MSBA by the Numbers




Core Courses


Prerequisite Courses


Pre-Program Courses


Dynamic Content Pillars

From Data to Insight: Behind Our Curriculum

William & Mary's Online MSBA program is designed to maximize your quantitative skills and elevate your knowledge of data science, with a particular focus on the applicability of data science to strategic business planning. The program curriculum revolves around four dynamic pillars, and mastery of these pillars helps ensure that our students graduate with a tangible advantage in a high-demand field, where opportunities are growing across industries and around the globe.

Learn to see beyond mere facts and figures as you explore the four pillars and build your analytical fluency:

  • Business Acumen: Aspects of business analytics relating to marketing, finance, economics, operations, supply chain and human resources management, and more
  • Math Modeling: Aspects of data analysis, including probability distributions, descriptive and inferential statistics, optimization, experimental design, and more
  • Computing Technologies: Data management, data analytics tools (like Excel, data mining, business intelligence, etc.), programming and more
  • Communicating With Impact: Interpreting the results of your data analysis and communicating this deeply technical material clearly, coherently and compellingly to audiences less familiar with the intricacies of analytical processes

These skills will guide you in asking the right questions, building the right models and using those models to perform the right analyses. The resulting insights, when appropriately interpreted and communicated, will give you the means to transform business outcomes by telling the right story, in the right way.

Plan Your Path Toward Success

“Employees who both understand a company's business goals and understand the data to help them reach those goals will be highly desirable to recruit and hire in the technology-driven workforce.”

Brian Carlidge
Executive director of pre-business and pre-graduate programs for Kaplan Test Prep1

See just how many career opportunities you could unlock with the Online MSBA—you might be surprised by the possibilities that await a tested data science professional.

See Career Statistics

Learn the Language of Data

When developing the Online Master of Science in Business Analytics (MSBA) program, William & Mary faculty observed an overwhelming need across industries for candidates with the quantitative and technical skills to match their business acumen and communication skills.

As such, our program incorporates a strong analytical component, where students learn to apply the most contemporary methodologies to practical business problems, and then learn to succinctly and effectively communicate the recommendations that result from their analyses.

The intensely engaging Online MSBA teaches you the requisite analytical skills to work with big data sets, such as machine learning and artificial intelligence, and to solve complex problems with multiple methodologies, including logistic regression, time-series analysis, Bayesian methods and more. Starting with our introductory Competing Through Business Analytics course, you’ll be immersed in the intricacies of the business analytics process, and by the end of the program, you’ll combine the skills you’ve acquired to execute an independent project in the Business Analytics Capstone.

Interwoven throughout each course are assignments that require you to analyze data and present it as you would in a business context. This routine skills application, combined with feedback from both faculty and cohort peers, helps prepare you to bring data-driven insights to your company’s bottom line even before you graduate.

Master the Dynamic Skills of a Data Science Professional

What exactly can you expect to take away from William & Mary’s Online MSBA? Discover the workplace value of our curriculum, and see what skills you’ll develop throughout the program.

Learn More

Online MSBA Courses Overview

At the intersection of our four pillars—business acumen, math modeling, computing technologies and communicating with impact—are the talents and tools every data science professional may need for a successful and profitable career in business analytics. The Online MSBA curriculum prepares you to master exactly these.

Our 32-credit curriculum can be broken down into the following three types of courses:

  • 4 prerequisite courses
  • 2 pre-program courses worth 0 credits
  • 8 core courses, worth a total of 32 credits

    Prerequisite Courses (8 credits)*

    At the discretion of the institution, students with documented expertise in mathematics, statistics, computer science, business and economics, and other quantitative subjects can waive the four prerequisite courses, completing the program in as few as 68 weeks. Students who are required to take the prerequisites are still able to graduate in as few as 75 weeks. Speak with an Admissions Advisor at 844-234-4075 to learn more.

BUAD 502A Probability and Statistics I (3 credits)

In the area of probability, this course covers the concepts of discrete and continuous probability distributions as well as conditional probability. It also covers basic statistics, which can be thought of as a set of tools for interpreting data. These include descriptive statistics, which permit us to describe basic characteristics of data, including the computation of means, standard deviations and ranges of a data set. This course also covers inferential statistics, which are methods for uncovering deeper insights from the data, such as hypothesis testing. Finally, the course considers data visualization as an integral part of data analysis.

BUAD 502B R Programming (1 credit)

This course provides a set of programming skills using the R programming language, which is widely used in business analytics for statistical computations.

BUAD 502C Python Programming (1 credit)

This course provides a foundation of Python programming skills for business analytics including knowledge of Python data types, facilitating repeated execution through the application of loops, using conditional statements, programming the input and output of data, the use of Python packages, and the construction of functions.

BUAD 502D Linear Algebra for Business Analytics (3 credits)

This course provides a set of linear algebra tools for performing business analytics including vector-matrix multiplication, Gaussian elimination, computing determinants, computing matrix rank, computing matrix column and row spaces, performing eigenanalysis, and performing principal components analysis.

Pre-Program Courses (0 credits)

W&M OMSBA Orientation (0 credits)

An interactive virtual seminar that helps set students up for success in this rigorous program. Led by your Student Success Coordinator, your OMSBA Orientation will cover an array of topics, including:

  • An introduction to William & Mary and the Raymond A. Mason School of Business
  • Tips for managing your work/life balance while in grad school
  • Educational expectations for the program
  • Academic policies and standards
  • The virtual classroom and learning management system (LMS)
  • Tips for networking while studying online
  • Advice for making the most of your digital learning experience
Excel Boot Camp (0 credits)

Completion of this course ensures that students have sufficient skills in Excel. This non-credit course will be available in Canvas throughout the program for students' reference as needed.

Core MSBA Courses (32 credits)

BUAD 5112 Competing Through Business Analytics (4 credits)

This course will include a survey of the state-of-the-art in business analytics, examining companies that have used business analytics for competitive advantage and how they have done so. This course will teach business acumen and how the field of analytics fits within the context of business. Topics will include business metrics as used for performance measurement and incentives, communicating with impact, visualization, and the functions of a company—how they interact, what data they have, and their development and deployment of algorithms. The course will also include a survey of opportunities for problem solving using business analytics in operations, supply chain, human resources, finance and marketing, as well as an introduction to the tools that are covered in the remainder of this program.

BUAD 5052 Probability and Statistics for Business Analytics (4 credits)

Probability and Statistics is a foundation course in the study of business analytics. It provides an understanding of the principles associated with modeling of stochastic processes. The topics will include probability theory—important probability distributions, sampling from distributions and the interaction of multiple stochastic processes; regression; statistical analysis—descriptive/inferential/predictive statistics, multivariate statistics and time series models; and modeling—modeling concepts, Monte Carlo simulation and decision analytics. Students will also be introduced to a variety of statistical modeling packages.

BUAD 5272 Database Management and Visualization (4 credits)

Organizations store data in two types of databases: operational and analytical. Operational database topics include database requirements, entity relationship modeling, relational modeling database constraints, update anomalies, normalization, Structured Query Language (SQL) and data quality. Analytical database topics include data warehousing concepts, dimensional modeling (star schemas), data warehouse/data mart modeling approaches, the extraction/transformation/load (ETL) process, online analytical processing (OLAP)/business intelligence (BI) functionalities and the data warehouse/data mart front end. Once data is cleaned and stored, data visualization is used to most effectively communicate information contained in the data. The course covers data visualization principles drawn from the fields of statistics, perception, graphic and information design, and data mining. Students will learn visual representation techniques that increase the understanding of complex data and models. Topics include charts, tables, graphics, effective presentations and dashboard design.

BUAD 5072 Machine Learning I (4 credits)

This course is designed to provide students with a deep understanding of the theory and practice of regression and classification, two of the most commonly used techniques in the data scientist's toolkit. These predictive analytics techniques are important members of a family of analytics often referred to as machine learning techniques. The programming language R is used extensively in labs and assignments in this class and subsequently reappears in other classes throughout the program.

BUAD 5082 Machine Learning II (4 credits)

This course is designed to provide students with a deep understanding of machine learning and big data, including more elaborate techniques that extend the coverage from Machine Learning I. The data storage and retrieval techniques that have served the information processing industry for decades have proven inadequate in the face of the huge collections of data presently being created by the internet and the so-called "Internet of Things." Businesses today require a new set of technologies that are specifically designed to deal with these huge data sets. In this course, the Hadoop environment and Amazon Web Services (AWS) will be used to process large-scale data sets.

BUAD 5022 Optimization and Heuristics (4 credits)

Optimization is an analytics methodology designed to yield the best solution to a given problem. Students are exposed to theory and applications of optimization including linear programming, non-linear programming, discrete optimization and specialized networks. This course includes discussion about the difficulties of accurately representing real-world processes with a mathematical model. Most business problems are too large or too complex to be solved optimally, where the strict definition of "optimal" means finding the provably best solution. Finding a solution that approximates the optimal solution is, therefore, the predominant mode of problem solving found in industry: these are called heuristic solutions. Many companies gain a competitive advantage by constructing heuristics that either find better solutions than do their competitors or find solutions more quickly. This course focuses on achieving such results by programming custom algorithms, which are a sequence of steps taken to provide a solution to a problem.

BUAD 5802 Artificial Intelligence (4 credits)

The theme of this course is "natural models and artificial intelligence." The course considers natural models of intelligence and their artificial equivalents. It shows how viewing natural intelligence is an effective mindset and it describes the key analytics tools required for designing and executing some business processes competently. A majority of the course is devoted to the topic of neural networks, although other methods are included, such as genetic algorithms, simulated annealing and swarm intelligence.

BUAD 5762 Business Analytics Capstone Project (4 credits)

This experiential practicum course includes a comprehensive business analytics project that the student will complete from start to finish, integrating the skills that have been acquired from their previous coursework in the business analytics program. They will define and frame a complex problem, develop a systematic approach to solving it using analytics, identify methodologies that are suited to the problem, quickly prototype solutions with those methodologies to identify the best approach, and, ultimately, generate an innovative solution and persuasively convey that solution using data visualization techniques and communication skills.

*Note: BUAD 502A, 502B, 502C and 502D are prerequisites for the remainder of the program. Students may be able to satisfy these prerequisites with courses from other sources, and they should inquire about their eligibility during the admission and onboarding process if they wish to do so.

The Online MSBA at a Glance

  • Complete in as few as 15 months**
  • 100% online
  • No residency or on-campus requirement
  • GMAT/GRE waiver available to qualified applicants
  • 3 starts per year: August, January and May
  • Earn your degree from a prestigious business school
  • Study with our faculty of industry experts

**Students who are required to complete the prerequisite courses can graduate in as few as 18 months.

Want More Insight?

Curriculum Overview MSBA

Take a look at what’s ahead in the Online MSBA program—download our program details guide, your one-stop document for admissions requirements, courses and more.

Download the Guide

The Workplace Value of the Online MSBA

Today’s corporate leaders are increasingly challenged to find qualified employees who understand data science and have proven experience applying its key business functions. Those who could fill this need must be familiar with unstructured data dumps, machine learning, data visualization and current analytics tools, but they must also be able to interpret the information acquired through these means and effectively communicate its implication(s) for the organization's bottom line.

By weaving our curriculum's four key pillars of business acumen, math modeling, computing technologies and communicating with impact into each of our Online MSBA courses, we blend the essential elements of business expertise with a robust portfolio of data science offerings. The result is a dynamic program with real-world applicability that ensures our students graduate with a thorough understanding of how to effectively apply their findings and communicate their insights in a succinct, coherent manner.

What our students say

“What brought me back to school was kind of looking at the changing landscape, professionally. I didn’t want to be pigeonholed into computer science or statistics, strictly one of those two, nor did I feel like the general approach of an MBA was right for me either. I like the intersection of the two, which is what led me to business analytics. There are a lot of possibilities.”

Andrew Lieberman
MSBA ’18

Redefine the Bottom Line

2.35 Million

Data science and analytics jobs posted in 20152

#1 Best Job in America

Data Scientist3


Median base salary for data scientists3


Percent of data science roles requiring a master’s degree4

2.7 Million

job openings expected by 2020 for U.S. data professionals5

What skills will you acquire in the Online MSBA?

  • Querying relational databases using SQL
  • Performing extract, transform, load (ETL) processes
  • Building data warehouses
  • Preparing data for analysis using data wrangling techniques
  • Managing data using services such as Hadoop, Amazon Web Services and NoSQL
  • Creating data visualizations and dashboards with Tableau
  • Performing descriptive, predictive and prescriptive analyses
  • Utilizing basic methodologies like regression, logistic regression, time-series analysis, Bayesian methods, etc.
  • Deploying a broad array of machine learning and artificial intelligence techniques
  • Constructing and executing prescriptive optimization models
  • Analyzing data with statistical software including R
  • Writing computer programs in Python and R
  • Designing, programming and implementing heuristic algorithms in Python
  • Conducting simulation analyses
  • Distilling strategic insight from analyses and communicating it persuasively

Interested in Our Online Programs?


Next Start

January 7
Spring 2019 term


Priority Application Deadline

February 22
Summer 2019 term


Application Deadline

April 9
Summer 2019 term


1. Retrieved on August 22, 2018, from
2. Retrieved on August 22, 2018, from
3. Retrieved on August 22, 2018, from,20.htm
4. Retrieved on August 22, 2018, from
5. Retrieved on August 22, 2018, from